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Abstract

Classification problems with categorical feature variables can be found in
various fields of study like biology, computer science, finance, etc. Our goal is
to discuss some parsimonious methodologies that can be used in this context.
Here we discuss about three different classifiers. The first one uses maximum
likelihood estimates. The second one uses a mixture probability model for
the conditional probabilities. And, the last one uses LASSO regularized lo-
gistic regression on counting statistics. We prove the weak consistency of the
classifier based on maximum likelihood estimates. We apply these classifiers
on simulated datasets to assess the performance by their misclassification
rates and time efficiency.
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1 Introduction

In many real world applications, we frequently come across categorical data
sequences. For example in sales demand prediction, products can be classi-
fied into several states like high, normal and low, with respect to the sales
volume. In DNA sequences analysis, the observations are represented by
large categorical sequences with categories {A, T, C, G}. Fields of study
like biology, computer science, finance many times deal with classification
problems where the feature variables are categorical data sequences.

Let us consider a two-class classification problem with class probabilities
π0 and π1 respectively, where π0+π1 = 1, π0 > 0 and the features x ∈ {0, 1}p.
For this case, the Bayes classifier with minimum misclassification probability
is given,

δB(x) =

{
0 if π0 p0(x) > π1 p1(x)

1 otherwise,
(1)

where pj is the probability mass function under the jth class, j ∈ {0, 1}.

1.1 What is the Problem?

In order to find the Bayes classifier, it is fundamental to calculate pj(x) ∀ x for
j ∈ {0, 1}. As |{0, 1}p| = 2p, we have to estimate a total of 2p+1 − 2 param-
eters (probabilities).

When we are considering a classification problem we estimate the un-
known parameters (probabilities) in pj, j ∈ {0, 1} from the training data.
Now, if the number of observations are less than 2p−1 for any of the classes,
then we may not be able to estimate all the parameters from the training
data. In such a case, we may have some observations absent in the training
set, but present in the test set. Thus we cannot calculate p̂j’s for those x’s.
Hence, we cannot use the Bayes classifier without a large training data. Also
the number of parameters is O(2p+1), which makes the classifier inefficient
for computational purpose when p is high.

1.2 Why Higher Order Markov Chains?

It is well-known that the feature variables in the classification problem may
not be independent and can be modeled using a higher-order Markov chain
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(see Dutta et al. 2014). Let (Xn)n≥0 follow a kth order Markov Chain, i.e.

Xn|Xn−1, . . . , X1
d
= Xn|Xn−1, . . . , Xn−k,∀n ≥ k, k ∈ N (2)

For an observation from the jth class xji, i ∈ {1, . . . , nj}, j ∈ {0, 1}
which follows a higher order Markov chain of order kj, we can write

pj(xji1, xji2, . . . , xjip)

= pj(xji1, . . . , xjikj) · pj(xji(kj+1)|xjikj . . . , xji2, xji1) . . .
. . . pj(xji(p−1)|xji(p−2) . . . , xji2, xji1) · pj(xjip|xji(p−1) . . . , xji2, xji1)

= pj(xji1, . . . , xjikj)

p∏
l=kj+1

pj(xjil|xji(l−1), . . . , xji(l−kj)) ∀ j ∈ {0, 1} (3)

In the above model (3), the pj(x), we have to calculate pj(xji1, . . . , xjikj)
and pj(xjil|xji(l−1), . . . , xji(l−kj)) which requires to estimate 2kj − 1 and 2kj ,
parameters respectively for each class, i.e. for a two-class problem we try
to estimate a total of 2k0+1 + 2k1+1 − 2 parameters. Hence we can attain a
reduction in dimension with respect to the parameters concerned, which may
lead to more efficiency in our computation.

Higher order Markov chains have also been used in a range of applications
including the analysis of wind speed and direction, DNA sequences, social
behaviour and financial series (see Berchtold and Raftery 2002).

In the literature, there are many methodologies proposed for modelling
the higher order Markov chains. Raftery (1984) proposed a mixture proba-
bility model for this purpose. While Ching et al. (2004) generalized Raftery’s
model. Machler and Buhlmann (2004) presented a new computational tool
named variable length Markov chains (VLMC). On the other hand, Yang
and Dunson (2016) proposed a methodology for a categorical response and
high-dimensional categorical predictors based on Bayesian conditional ten-
sor factorization. Dutta et al. (2014) proposed methodologies based on the
occurrences of words (specific sequences) in the feature variables.

In this project, we will try to use the methodologies proposed by Dutta
et al. (2014) and, Ching et al. (2004) for the purpose of modelling the higher
order Markov chains. We will propose a new methodology in this context.
At last we will also try to compare the efficiencies of these methodologies.
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2 Methodology

2.1 Classifier based on Maximum Likelihood Estimates

For a stochastic sequence xji = (xji1, . . . , xjip)
T generated from the proba-

bility distribution Gj belonging to the jth class, the Bayes rule δB(xji) with
minimum misclassification probability is given by,

δB(xji) =

{
0 if π0 pG0(xji) > π1 pG1(xji)

1 otherwise,
(4)

where pj is the probability mass function under the jth class, for j ∈ {0, 1}.
Now for any integer k > 0, we refer to the elements of {0, 1}k as k-words.

For a fixed k and a fixed k-word (m1, . . . ,mk) ∈ {0, 1}k, if I(·) is the indicator
variable, then

fxji
(m1, . . . ,mk) =

p−k+1∑
l=1

I(xjil = m1, xji(l+1) = m2, . . . , xji(l+k−1) = mk)

is defined as the frequency for the k-word (m1, . . . ,mk) in xji. The fre-
quencies of different k-words in xji can be considered as features of xji, for
i = {1, 2, . . . , ni}, j ∈ {0, 1}

Now let us assume that, for j ∈ {0, 1}, the probability distribution Gj

corresponding jth class is Markov with order kj. Let, θj(kj) be the vec-
tor of model parameters, j ∈ {0, 1}. Also, let k = (k0, k1) and φ(k) =
(θ0(k0), θ1(k1)). Then, we can rewrite the decomposition of the likelihood in
(3) under the Markov model as,

log pGj
(x) =

∑
(m1,...,mk)∈{0,1}k

I(x1 = m1, . . . , xk = mk) log qj(m1, . . . ,mk)

+
∑

(m1,...,mk+1)∈{0,1}k+1

fx(m1, . . . ,mk+1) log pj(mk+1 | mk, . . . ,m1), (5)

and the Bayes rule based on such Markov likelihoods become

δ(x, φ(k),k) =

{
0 if log π0 + log pG0(x) > log π1 + log pG1(x)

1 otherwise.
(6)
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Now, the Bayes rule consists of unknown parameters which can be esti-
mated from the training set. For a set of random samples xj1,xj2, . . . ,xjnj

from the jth class in the training set, the maximum likelihood estimates of
model parameters based on the observations are given by,

q̂j(m1, . . . ,mkj) =
1

nj

ni∑
i=1

I(xji1 = m1, . . . , xjikj = mkj) (7)

and

p̂j(mkj+1 | mkj , . . . ,m1) =

∑nj

i=1 fxji
(m1, . . . ,mkj ,mkj+1)∑nj

i=1

∑
m={0,1} fxji

(m1, . . . ,mkj ,m)
, (8)

where ml ∈ {0, 1} ∀ l ∈ {1, 2, . . . , k + 1}, j ∈ {0, 1}.
Let θ̂j(kj) be the maximum likelihood estimates of θj(kj). It can be

proved that if the assumptions regarding higher order Markov chain of order
kj and its stationarity are true, and p > kj θ̂j(kj) converges to in probability
to θj(kj) as minj nj → ∞ ∀j ∈ {0, 1}. The proof of the convergence can be
found in the appendix.

For the purpose of choosing the hyper-parameter k = (k0, k1), we con-
duct V-fold cross-validation. We choose k such that the cross-validation
error ∆̂CV (k) is minimum and denote it by k̃ (see Dutta et al. 2014). We
fit the model with (φ(k̃), k̃) and can use the Bayes classifier given in (6)
subsequently to calculate the misclassifcation rate from the test set. Then it
can be proved that with assumptions same as above this classifier has weak
consistency (see Devroye et al. 1996).
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2.2 Classifier based on Mixture Probability Model

2.2.1 The Model

Similar as the previous method, our goal here is to estimate the likelihood
functions, so that we can use them in the Bayes classifier given in (1). Let us
consider the decomposition of the likelihood given in (3). Given the training
data, for the class j, we estimate pj(x1, . . . , xk) from the sample probability
mass function of the first k variables (x1, . . . , xk) similarly as given in (7).

For the purpose of modelling the higher order Markov chains, Raftery
(1984) proposed a simple mixture probability model given by,

pj(Xn = t0 | Xn−1 = t1, . . . , Xn−k = tk) =

kj∑
l=1

λ
[j]
l q

[j]
t0tl

, (9)

where t0, tl ∈ {0, 1}, l = 1, . . . , kj, j ∈ {0, 1}
∑kj

l=1 λ
[j]
l = 1 and Q[j] =(

(q
[j]
st )

)
is a transition matrix with column sums are equal to one such that

0 ≤
kj∑
l=1

λ
[j]
l q

[j]
t0tl
≤ 1, t0, tl ∈ {0, 1}, l = 1, . . . , kj,∀j ∈ {0, 1}.

The model in (9) can also be written as

χ
[j]
n+kj+1 =

kj∑
l=1

λ
[j]
l Q

[j]χ
[j]

n+kj+1−l , ∀j ∈ {0, 1}, (10)

where χ
[j]
n+kj+1−l is the probability distribution of states at time (n+kj+1−l).

Ching et al. (2004) generalized (10) as follows:

χ
[j]
n+kj+1 =

kj∑
l=1

λ
[j]
l Q

[j]
l χ

[j]

n+kj+1−l , ∀j ∈ {0, 1}. (11)

2.2.2 Estimation

Primary Estimation : In (11), Ching et al. (2004) assumed that χ
[j]
n+kj+1

depends on χ
[j]
n+kj+1−l, through the matrix Q

[j]
l and the weights λ

[j]
l ∀ l ∈
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{1, . . . , kj} and j ∈ {0, 1}. The authors related Q
[j]
l to the lth step transition

matrix of the process for the jth class.

Given a sequence from the training set, they estimate Q
[j]
l by the lth step

transition matrix of the observations belonging to class j and λ
[j]
l from the

minimization problem :

min
λ[j]

∥∥∥∥ kj∑
l=1

λ
[j]
l Q

[j]
l χ̂

[j]
− χ̂[j]

∥∥∥∥, (12)

subject to
∑k

l=1 λ
[j]
l = 1 and λ

[j]
l ≥ 0, j ∈ {0, 1} ∀ l, where χ̂[j] is vector of

the proportions of the occurrence of each state in the given sequence. In the
above minimization problem, if we take l1 norm then the problem reduces to a
linear programming problem and λ

[j]
l can be estimated from the optimization

problem.

Combination of Estimates : Now, λ̂
[j](i)

and Q̂
[j](i)

l be the estimates of

λ[j] and Q
[j]
l from the ith sequence xji from the training set of class j. To

have an overall model from the training set for the class j, we propose the

overall estimates for λ[j] and Q
[j]
l as :

λ̄
[j]

=
1

nj

nj∑
i=1

λ[j](i) and Q̄
[j]
l =

1

nj

nj∑
i=1

Q
[i](j)
l , l = 1, . . . , kj, j ∈ {0, 1}.

Thus our model for the jth class becomes

p̂j(Xn = t0|Xn−1 = t1, . . . , Xn−kj = tkj) =

nj∑
l=1

λ̄
[j]
l

[
Q̄

[j]
l

]
t0tl

, (13)

where λ̄
[j]

=

(
λ̄
[j]
1 , . . . , λ̄

[j]
kj

)T
and

[
Q̄

[j]
l

]
t0tl

is the (t0, tl)
th element of Q̄

[j]
l .

We can easily see that λ̄
[j]

and Q̄
[j]
l , l = 1, . . . , kj also satisfies the condi-

tions which were satisfied by, λ[j] and Q
[j]
l ’s. Hence by (3), we can estimate

pj(x1, . . . , xn) and use the estimated Bayes classifier for the purpose of
classification.
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Choosing the order of the higher order Markov chains : For the
purpose of choosing the hyper-parameter related to the order of the higher
order Markov chains, we conduct V-fold cross-validation. Let k = (k0, k1)
be the true orders of the higher order Markov chains corresponding class 0
and 1, respectively. We choose k such that the cross-validation error ∆̂CV (k)
is minimum and denote it by k̃. We fit higher order Markov models with
the given estimates the model parameters k̃, and use the Bayes classifier
subsequently to calculate misclassification rate.
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2.3 LASSO Regularized Logistic Regression Classifier
based on Counting Statistics

From (5), we can get the sufficient statistic in this model given the training
set as

T (x) =

(
I(x1 = 0, . . . , xk = 0), . . . , I(x1 = 1, . . . , xk = 1),

fx(0, . . . , 0, 0), . . . , fx(1, . . . , 1, 1)

)T
,

where the last 2k+1 entries are the set of the frequencies of all the possible
(k+ 1)-words. Now, it can be easily seen that the first 2k entries of T (x) are
indicator functions and hence sparse (actually only one of them will be 1 and
others will be 0). So, if we ignore the first 2k entries, the loss of information
would not be very significant.

We define our new statistics as follows

T̃ (x) =

(
fx(0, . . . , 0, 0), . . . , fx(1, . . . , 1, 1)

)T
2k+1×1

In general we use the set of the frequencies of all the possible k-words in x
and denoted it as T̃k. It may be noted that here we are considering a mapping
T̃k : {0, 1}p −→ Z2k

≥ , where Z≥ is the set of all non-negative integers. Thus,
we go from dimension p to 2k, if we have k such that p > 2k then we can
have a dimension reduction in the data. We must remember this fact while
choosing k.

Now, we will consider a classification rule on Z2k

≥ based on the training

set. So, T̃k is supposed to be sparse, as the occurrence of all the k-words in a
single observation x is less likely, in case k is not very small. Then, we must
implement a classification rule which would perform well in such a scenario.
We propose the use of elastic net regularization on the logistic regression
model(see Hastie et al. 2008). The elastic net regularization uses a convex
combination of l1 and l2 penalties on the log-likelihood function. Here we
only use the LASSO regularization.

Let T̃k(x) = z be the transformed variable. Then the l1 penalized log-
likelihood for the parameters of the logistic regression β = (β0, . . . , βq)

T
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where q = 2k is given by,

logL(β|X ) =
1∑
j=0

nj∑
i=1

(
yji · βTzji − log(1 + eβ

T zji)

)
+ λ‖β‖1

For a given choice of (k, λ), we can get the logistic classifier by maximizing
logL(β|X ). For the purpose of choosing the hyper-parameters (k, λ), we con-
duct V-fold cross-validation on the training set. We choose (k, λ) such that
the cross-validation error ∆̂CV (k, λ) is minimum and denote it by (k̃, λ̃). For
the purpose of convenience, we propose a two-stage minimization approach
for ∆̂CV (k, λ), and (k̃, λ̃) is defined as

(k̃, λ̃) = arg min
k

min
λ

∆̂CV (k, λ).

Hence, we fit the model with (k̃, λ̃). Let k0 and k1 be the true orders of the
higher order Markov chains corresponding the two classes. In this method,
we only consider a single parameter k regarding the orders. But it should be
noted that, this method do not not violate the Markov assumption as long
as k ≥ max{k0, k1}.
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3 Numerical Results

For the purpose of comparison of performance of the three different classifiers
that we have described earlier, we conduct simulation studies. We consider
equal class probabilities. To generate the dataset we use the transition prob-
abilities,

Class 0 :
p0(0|0, 0) = 0.4, p0(0|0, 1) = 0.6,

p0(0|1, 0) = 0.6, p0(0|1, 1) = 0.4.

Class 1 :
p1(0|0, 0) = 0.6, p1(0|0, 1) = 0.4,

p1(0|1, 0) = 0.4, p1(0|1, 1) = 0.6.

We generated sequences of length 100, and formed the training and test
samples with 50 and 150 observations for each class, respectively. We con-
duct 100 Monte Carlo simulations (repetitions of the procedure) to get a
better idea about the misclassification rates. We pre-initialize each sequence
with (0,1). We have taken a reducible, transient Markov chain which has a
stationary distribution. So, the sequences will not be affected by the pre-
initialization.

The average misclassification rates with their standard errors for the
classifiers based on maximum likelihood estimates (MLE), mixture proba-
bility model and LASSO-logistic regression are tabulated in the Table 1.
The details regrading the empirical probability distributions of the hyper-
parameters are tabulated in Tables 2-6. The average time taken by the
classifiers for each replication with their standard deviation are tabulated in
Table 7.

In all the classifiers described earlier, we have to estimate the hyper-
parameters through V-fold cross-validation. We conduct 2-fold cross-validation
with 10 random splits for each case. Keeping in the mind the fact about
dimension reduction we only consider k0, k1 ∈ {1, 2, 3} for the first two clas-
sifiers and k ∈ {1, 2, 3, 4, 5}, λ ∈ {0, 0.01, . . . , 0.34, 0.35} for the LASSO-
logistic regression classifier.
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Table 1: Misclassification rates with standard error (within parentheses).

Methods Avg. Misclassification Rate
MLE 0.0227 (0.00851)

Mixture Model 0.391 (0.03532279)
LASSO-Logistic 0.0342 (0.01320)

Table 2: Joint empirical probability distribution of (k̂CV0 , k̂CV1 ) for the clas-
sifier based on maximum likelihood estimates.

k̂CV0

k̂CV1 1 2 3

1 0 0 0
2 0 0.95 0.04
3 0 0.01 0

Table 3: Joint empirical probability distribution of (k̂CV0 , k̂CV1 ) for the clas-
sifier based on mixture probability model.

k̂CV0

k̂CV1 1 2 3

1 0.14 0.05 0.09
2 0.10 0.09 0.11
3 0.09 0.15 0.18
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Table 4: Joint empirical probability distribution of (k̂CV , λ̂CV ) for the
LASSO-Logistic classifier.

λ̂CV
k̂CV 1 2 3 4 5

0 0 0 0.20 0.05 0.01
0.01 0 0 0.13 0.07 0.01
0.02 0 0 0.08 0.08 0
0.03 0 0 0.11 0.01 0.01
0.04 0 0 0.07 0.04 0
0.05 0 0 0.02 0.04 0.01
0.06 0 0 0.03 0 0
0.07 0 0 0.02 0 0
0.09 0 0 0.01 0 0

otherwise 0 0 0 0 0

Table 5: Marginal empirical probability distribution of k̂CV

k̂CV 1 2 3 4 5
Probability 0 0 0.67 0.29 0.04

Table 6: Marginal empirical probability distribution of λ̂CV

λ̂CV 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.09
Probability 0.26 0.21 0.16 0.13 0.11 0.07 0.03 0.02 0.01

Table 7: Average time taken (with standard deviation within parentheses)
by different classifiers per replication of a simulated data set.

Methods Avg. time taken (in seconds)
MLE 25.90008 (0.1429632)

Mixture Model 78.21576 (3.150723)
LASSO-Logistic 6.794869 (0.2085855)



4 Conclusion

We have discussed three different classifiers in this context of a classification
problem with categorical feature variables. We have applied the classifiers to
simulated datasets and have obtained some numerical results regarding the
misclassification rates, time efficiency, and the hyperparameters.

In Table 1, we can see the average misclassification rates of the different
classifiers that were obtained for the simulated datasets. The classifier based
on the mixture probability model has very high misclassification rates when
compared with others. On the other hand, the classifiers based on maximum
likelihood estimates and counting statistics performed quite similarly well.

An important task of all the classifiers is to detect the true order of
the higher order Markov chains involved. From the Tables 2-6, we can see
how the classifiers work regarding this context. We already stated earlier
that we do not violate the Markov assumptions as long as the estimated
orders are greater than or equal to the true orders (in our case, 2 for both
the classes). From Tables 2 and 5, we can see that the classifiers based
on maximum likelihood estimates and counting statistics always estimated
the orders correctly. But for the classifier based on the mixture probability
model, the assumptions are violated for 47% of the replications, where in
14% of the replications, both of the hyperparameters were not correct. This
may be contributed as a reason for the high misclassification rate. May be by
taking a higher number of folds for cross-validation with more replications,
we can get better results from this classifier. We want to add that from Table
6, the LASSO-logistic classifier tends to choose small LASSO penalization
rather than taking the large ones.

Table 7 shows that the LASSO-Logistic classifier based on counting statis-
tics is the most time-efficient between the three concerned. Whereas the
classifiers based on maximum likelihood estimates and mixture probability
model take about four times and eleven times, respectively, of what the
LASSO-Logistic classifier takes for a single replication data.

From the simulation studies, we can observe that the classifier based on
maximum likelihood estimates and LASSO-logistic classifier performs quite
well if we consider the misclassification rate. On the other hand, the LASSO-
logistic classifier performs most efficiently concerning the execution time. In
contrast, the classifier based on the mixture probability model does not per-
form well when we consider either the misclassification rate or time efficiency.

13



5 Appendix : Proof of Weak Consistency for

Section 2.1

Proposition 5.1. If Gj is an irreducible, stationary Markov of order kj
then q̂j(m1, . . . ,mkj) converges in probability to qj(m1, . . . ,mkj) as minj nj →
∞ ∀ j ∈ {0, 1}

Proof. Now,

EGj

(
I(xji1 = m1, . . . , xjikj = mkj)

)
= PGj

(X1 = m1, . . . , Xkj = mkj)

= qj(m1, . . . ,mkj) ∀ j ∈ {0, 1}.

Similarly,

VGj

(
I(xji1 = m1, . . . , xjikj = mkj)

)
= PGj

(X1 = m1, . . . , Xkj = mkj)(1− PGj
(X1 = m1, . . . , Xkj = mkj))

= qj(m1, . . . ,mkj)(1− qj(m1, . . . ,mkj)) ∀ j ∈ {0, 1}.

Hence,

EGj

(
q̂j(m1, . . . ,mkj))

)
= qj(m1, . . . ,mkj) ∀ j ∈ {0, 1}.

VGj

(
q̂j(m1, . . . ,mkj)

)
=

1

n2
j

nj∑
i=1

VGj

(
I(xji1 = m1, . . . , xjikj = mkj)

)
=

1

nj
qj(m1, . . . ,mkj)

(
1− qj(m1, . . . ,mkj)

)
∀ j ∈ {0, 1}.

Note that, the covariances are 0 ∀ i 6= i′, as (xji1, . . . , xjikj) are first kj en-
tries of the i.i.d. observations from the Markov chainGj. So, VGj

(q̂j(m1, . . . ,mkj)
converges to 0 as minj nj →∞ ∀ j. ∈ {0, 1}. Thus,

q̂j(m1, . . . ,mkj)
P→ qj(m1, . . . ,mkj) as min

j
nj →∞ ∀ j ∈ {0, 1}. �
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Proposition 5.2. If Gj is an irreducible, stationary Markov of order kj
and p > kj ∀j, then p̂j(mkj+1| m1, . . . ,mkj) converges in probability to
pj(mkj+1| m1, . . . ,mkj) as minj nj → ∞ ∀ j ∈ {0, 1}, where p is the length
of each of the feature data sequences.

Proof. Consider

p̂j(mkj+1| m1, . . . ,mkj) =
Anj

Bnj

,

where

Anj
=

1

nj · (p− kj)

nj∑
i=1

fxji
(m1, . . . ,mkj ,mkj+1

), and

and

Bnj
=

1

nj · (p− kj)

nj∑
i=1

∑
m∈S

fxji
(m1, . . . ,mkj ,m) ∀ j ∈ {0, 1}.

Now,

E

(
fxji

(m1, . . . ,mkj ,mkj+1
)

)
=

p−kj∑
l=1

E

(
I(xjil = m1, . . . , xji(l+kj−1) = mkj , xji(l+kj) = mkj+1)

)

=

p−kj∑
l=1

PGj
(Xl = m1, . . . , Xl+kj = mkj+1)

=

p−kj∑
l=1

PGj
(Xn = m1, . . . , Xn+kj = mkj+1)

[
due to stationarity of (Xjil)l≥0

]
= (p−kj)·PGj

(Xn = m1, . . . , Xn+kj−1 = mkj , Xn+kj = mkj+1) ∀ j ∈ {0, 1}.

Then,

E(Anj
) =

1

nj · (p− kj)

nj∑
i=1

E

(
fxji

(m1, . . . ,mkj ,mkj+1
)

)
= PGj

(Xn = m1, . . . , Xn+kj−1 = mkj , Xn+kj = mkj+1),
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E(Bnj
) =

1

nj · (p− kj)

nj∑
i=1

∑
m∈S

E

(
fxji

(m1, . . . ,mkj ,m)

)

=
∑
m∈S

1

nj · (p− kj)

nj∑
i=1

E

(
fxji

(m1, . . . ,mkj ,m)

)
=
∑
m∈S

PGj
(Xn = m1, . . . , Xn+kj−1 = mkj , Xn+kj = m)

[
similar as above

]
= PGj

(Xn = m1, . . . , Xn+kj−1 = mkj) ∀ j ∈ {0, 1}.

Again,

Anj
=

1

nj · (p− kj)

nj∑
i=1

p−kj∑
l=1

I(xjil = m1, . . . , xji(l+kj) = mkj+1) ∀ j ∈ {0, 1}.

Let, the random variable Yjil be defined such that, ∀ ω ∈ Ω,

{ω : Y −1jil (ω) = f(m1, . . . ,mkj+1)}
= {ω : (Xjil . . . , Xji(l+kj))

−1(ω) = (m1, . . . ,mkj+1)},

where f can be defined as an one-one function from {0, 1}kj+1 to a finite set
A. If (Xjil)l≥0’s follows a higher order Markov chain order kj, then (Yjil)l≥0
follows a higher order Markov chain order 2kj which has a state space A.
Then Anj

can be written as follows:

Anj
=

1

nj · (p− kj)

nj∑
i=1

p−kj∑
l=1

I

(
yjil = f(m1, . . . ,mkj+1)

)
∀ j ∈ {0, 1}.

Then we can write by applying the Ergodic theorem that (see Shalizi 2009)

Anj

P→ PGj
(Xn = m1, . . . , Xn+kj−1 = mkj) as min

j
nj →∞ ∀ j ∈ {0, 1},

and similarly applying the Ergodic theorem we can prove that

Bnj

P→ PGj
(Xn = m1, . . . , Xn+kj−1 = mkj) as min

j
nj →∞∀ j ∈ {0, 1}.
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By Slutsky’s theorem,

p̂j(mkj+1|m1, . . . ,mkj)

=
Anj

Bnj

P→
PGj

(Xn = m1, . . . , Xn+kj−1 = mkj , Xn+kj = mkj+1)

PGj
(Xn = m1, . . . , Xn+kj−1 = mkj)

= PGj
(Xn+kj = mkj+1|Xn = m1, . . . , Xn+kj−1 = mkj)

= pj(mkj+1|m1, . . . ,mkj), as min
j
nj →∞ ∀ j ∈ {0, 1}.

Thus, p̂j(mkj+1| m1, . . . ,mkj)
P→ pj(mkj+1| m1, . . . ,mkj),

as min
j
nj →∞ ∀ j ∈ {0, 1}. �

Proposition 5.3. If Gj is an irreducible, stationary Markov of order kj and
p > kj ∀j, then the classifier based on the maximum likelihood estimators of
the model parameters has weakly consistency as minj nj → ∞ ∀ j, where p
is the length of each of the feature data sequences.

Proof. Let x ∈ {0, 1}p be an observation from the test set and y be its true
class. Then, the Bayes classifier ∆B is defined by,

δB(x) = arg max
j
πj pGj

(x),

where pGj
is the probability mass function under the jth class.

Then, the Bayes risk ∆B is defined as, ∆B = P (δB(X) = Y ). It can be
noted that ∆B is a function of the model parameters. The estimated Bayes
classifier based on the maximum likelihood estimates is given by

δn(x) = arg max
j
π̂j p̂Gj

(x),

where p̂Gj
is the estimated probability mass function under the jth class,

estimated with maximum likelihood estimates of the model parameters and
n =

∑
j nj.

Let x1, . . . ,xN ∈ {0, 1}p be sample observations from the test set and
y1, . . . , yN be their true classes, respectively. Then, we define the estimated
Bayes risk as, ∆n = 1

N

∑N
i=1 I(δn(xi) = yi). Now, we have already proved
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that the maximum likelihood estimators of the model parameters converge
in probability to the true model parameters as minj nj →∞.

So, by the continuous mapping theorem we can say that, ∆n
P→ ∆B as

minj nj → ∞ (see Devroye et al. 1996). Hence, we have the weak consis-
tency for δn. �
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